
Monad Transformer Compatibility
A monad transformer stack will provide access to many monad type classes. But
you have to be careful, which transformers can be stacked.

deriving-trans uses 3 categories of monad transformers to implement instances for any monad
transformer without knowing its exact definition, which solves mtl's “n2 problem”.

MonadTrans

lift a monadic computation m a into a monad transformer t m a.

MonadTransControl

liftWith runs a transformer’s computation t m a in the base monad m a, but you have to take
care of the transformer’s monadic state StT t a explicitly with restoreT.

MonadTransControlIdentity

liftWithIdentity is just like liftWith, but without monadic state.

These 3 categories form a hierarchy where MonadTransControlIdentity is stronger than
MonadTransControl, which is stronger than MonadTrans.

Compatibility Matrix
The following table gives you two pieces of information. The “transformer category” tells you,
which kind of transformer you can stack on top and still keep access to the type class. The “set by
transformers” column tells you, which transformers implement the type class by themselves.

NOTE This table is valid for deriving-trans 0.8.0.0.

monad type class transformer category set by transformers

MonadBase b MonadTrans set by base monad

MonadBaseControl b MonadTransControl set by base monad

MonadBaseControlIdentity b MonadTransControlIdentity set by base monad

base

Alternative MonadTransControl • CatchT

• ExceptT e with Monoid e

• MaybeT

MonadFail MonadTrans • CatchT

• MaybeT

MonadFix MonadTransControlIdentity

MonadIO MonadTrans set by base monad

MonadPlus MonadTransControl

MonadZip MonadTransControlIdentity

felixspringer.xyz 2023-02-17-f4716ae422f101a8d959c7f98088b96de8f0c6d4

1

https://hackage.haskell.org/package/deriving-trans
https://hackage.haskell.org/package/mtl
https://hackage.haskell.org/package/deriving-trans-0.8.0.0
https://felixspringer.xyz/homepage

monad type class transformer category set by transformers

exceptions
MonadThrow MonadTrans • CatchT

MonadCatch MonadTransControl • CatchT

mtl

MonadAccum w MonadTrans • AccumT w

MonadCont MonadTransControl • ContT r

MonadError e MonadTransControl • ExceptT e

MonadReader r MonadTransControl • ReaderT r

• RWST r w s with Monoid w

◦ Lazy

◦ Strict

◦ CPS

MonadRWS r w s MonadTransControl • RWST r w s with Monoid w

◦ Lazy

◦ Strict

◦ CPS

MonadSelect r MonadTrans • SelectT r

MonadState s MonadTrans • RWST r w s with Monoid w

◦ Lazy

◦ Strict

◦ CPS

• StateT s

◦ Lazy

◦ Strict

MonadWriter w MonadTransControl • RWST r w s with Monoid w

◦ Lazy

◦ Strict

◦ CPS

• WriterT w with Monoid w

◦ Lazy

◦ Strict

◦ CPS

primitive PrimMonad MonadTrans set by base monad

random

StatefulGen g MonadTrans

FrozenGen f MonadTrans

RandomGenM g r MonadTrans

felixspringer.xyz 2023-02-17-f4716ae422f101a8d959c7f98088b96de8f0c6d4

2

https://felixspringer.xyz/homepage

monad type class transformer category set by transformers

resourcet MonadResource MonadTrans • ResourceT

unliftio MonadUnliftIO MonadTransControlIdentity set by base monad

And now let me quickly explain how to make use of this table with an example.

Example 1. Understanding MonadReader r as an example.

In the table you will find a row on MonadReader, which will give you the following information.

1. A MonadReader r m instance can also imply MonadReader r (t m) when
t satisfies MonadTransControl.

2. ReaderT r or RWST r w s can be used to implement an instance by
themselves.

Here are some examples of transformer stacks for any Monad m using (.|>) from deriving-trans.

(TransparentT .|> ReaderT r .|> ExceptT e) m

☑ will have a MonadReader r instance, because ExceptT e satisfies MonadTransControl.

(TransparentT .|> ReaderT r .|> ContT r) m

☐ won’t have a MonadReader r instance, because ContT r doesn’t satisfy MonadTransControl.

(TransparentT .|> ReaderT r1 .|> ReaderT r2) m

☑ will have a MonadReader r2 instance.

☑ will also have a MonadReader r1 instance, unless r1 ~ r2.

(TransparentT .|> ExceptT e) m

• will have a MonadReader r instance, whenever m satisfies MonadReader r.

Feel free to use this table as a cheat sheet or learning material. There are some intricacies though,
which are hard to express in this format.

TIP
Some methods like ask from MonadReader don’t require the “transformer category” from
the table. In this case you might want to use your own type class, which you can call
MonadAsk for example. This might actually be default in the future anyways though.

NOTE

Some monad type classes are “set by base monad”. I chose this for a few type classes,
which only make sense when the instances come from the base monad m.

Compare these instances to understand the difference.

-- recursive instance
(MonadExample (t2 m) {-, ... -}) => MonadExample (ComposeT t1 t2 m)

-- base monad instance

felixspringer.xyz 2023-02-17-f4716ae422f101a8d959c7f98088b96de8f0c6d4

3

https://github.com/haskell/mtl/issues/116
https://felixspringer.xyz/homepage

(MonadExample m {-, ... -}) => MonadExample (ComposeT t1 t2 m)

Outlook
Currently I don’t have proofs for the compatibility matrix, so it’s possible, that some instances are
not lawful and will change in the future. I am working on supporting logict, but in this case I am not
yet sure, whether we are allowed to lift it through any t satisfying MonadTransControl.

felixspringer.xyz 2023-02-17-f4716ae422f101a8d959c7f98088b96de8f0c6d4

4

https://hackage.haskell.org/package/logict
https://github.com/Bodigrim/logict/issues/34
https://github.com/Bodigrim/logict/issues/34
https://felixspringer.xyz/homepage

	Monad Transformer Compatibility
	Compatibility Matrix
	Outlook

