
composing Transformers
There exists a certain kind of monad transformers. I’m talking about all
transformers that have lawful instances of MonadTransControl from the monad-
control library. In particular ReaderT, StateT and ExceptT have lawful instances.
Let’s stick to ReaderT for now.

newtype ReaderT r m a = ReaderT { runReaderT :: r -> m a }
 deriving stock (Functor, Applicative, Monad)

instance MonadTrans ReaderT where
 lift = ReaderT . const

instance MonadTransControl ReaderT where
 type StT (ReaderT r) a = a
 liftWith f = ReaderT $ \r -> f $ \t -> runReaderT t r
 restoreT = ReaderT . const

Why is ReaderT of interest?
ReaderT in conjunction with an IO-based Monad m can be used to build stateful applications, when
using something like stm's TVars. ReaderT is special compared to other transformers, because it
doesn’t carry any monadic state StT (ReaderT r) = a, which is an associated type of the
MonadTransControl class. This is also the reason, why it has an instance of MonadUnliftIO.

NOTE MonadBaseControl IO m should be a superclass of MonadUnliftIO m.

So in the case of ReaderT, withRunInIO (from MonadUnliftIO) is just a special case of liftBase (from
MonadBaseControl). This is a powerful function, which basically allows us to not only lift monadic
values, but also provide monadic arguments. An interesting example of this is the Application type
alias from wai.

type Application = Request -> (Response -> IO ResponseReceived) -> IO ResponseReceived

Instead of having IO directly in the Application type, you can use an arbitrary Monad m with the
constraint MonadUnliftIO m. I did exactly this in a library called wai-control.

type ApplicationT m = Request -> (Response -> m ResponseReceived) -> m
ResponseReceived

felixspringer.xyz 2022-02-05-f4716ae422f101a8d959c7f98088b96de8f0c6d4

1

https://hackage.haskell.org/package/monad-control
https://hackage.haskell.org/package/monad-control
https://hackage.haskell.org/package/stm
https://hackage.haskell.org/package/wai
https://hackage.haskell.org/package/wai-control
https://felixspringer.xyz/homepage

Building an application
Now let’s build an application using a Configuration, the ability to do logging and a database
connection.

NOTE
You should be able to cover most of the required language extensions with GHC2021.
You will also need QuantifiedConstraints and UndecidableInstances.

Configuration is just a simple record.

data Configuration = Configuration
 { databaseUrl :: T.Text
 , databasePassword :: T.Text
 , port :: Word8
 }

For logging the monad-logger library is used.

newtype LoggingT m a = LoggingT { runLoggingT :: (Loc -> LogSource -> LogLevel ->
LogStr -> IO ()) -> m a }
 deriving (Functor, Applicative, Monad)

-- and additional instances ...

When inspecting the type of LoggingT, one can see, that this is just a reader with access to the
logging function.

For demonstration purposes let’s add another transformer to our environment, that allows us to
talk to a database. Some implementation details are left to your imagination.

newtype DatabaseT m a = DatabaseT { runDatabaseT :: ReaderT (TVar DatabaseConnection)
m a }
 deriving (Functor, Applicative, Monad)

-- and additional instances ...

And now we just need a type class to use as a constraint, when later on actually building the
application logic.

class Monad m => MonadDatabase m where
 queryDatabase :: DatabaseQuery -> m DatabaseResponse

felixspringer.xyz 2022-02-05-f4716ae422f101a8d959c7f98088b96de8f0c6d4

2

https://hackage.haskell.org/package/monad-logger
https://felixspringer.xyz/homepage

instance (MonadIO m) => MonadDatabase (DatabaseT m) where
 queryDatabase = undefined -- TODO: Implementation.

Naive AppT implementation
To hide away implementation details, it might be of interest to wrap your environment with a
newtype AppT. We will also add MonadTrans and MonadTransControl instances, that have to be defined
manually, but can help when implementing other instances like MonadIO or mtl type classes.

newtype AppT m a = AppT { unAppT :: DatabaseT (ReaderT Configuration (LoggingT m)) a }
 deriving newtype (Functor, Applicative, Monad)

instance MonadTrans AppT where
 lift = AppT . lift . lift . lift

instance MonadTransControl AppT where
 type StT AppT a = StT LoggingT (StT (ReaderT Configuration) (StT DatabaseT a))
 liftWith f = AppT $ liftWith $ \ run ->
 liftWith $ \ run' ->
 liftWith $ \ run'' ->
 f $ run'' . run' . run . unAppT
 restoreT = AppT . restoreT . restoreT . restoreT

To use this you will also need a “runner” function. This function will initialize the environment for
your application.

runAppT :: MonadIO m => Configuration -> AppT m a -> m a
runAppT config app = runStdOutLogging $ runReaderT (runDatabaseT config (unAppT app))
config

If you look closely, you might say that this is not all of the initialization. We still need to read the
Configuration and connecting to the database was left to runDatabaseT. If you have a complicated
environment you might be interested in the next approach, which addresses this non-trivial part of
initialization.

Improving initialization
We can use our transformer stack to guide the initialization. The inner transformers should be
initialized before the outer ones. In our example that would mean:

1. LoggingT

2. ReaderT Configuration

3. DatabaseT

felixspringer.xyz 2022-02-05-f4716ae422f101a8d959c7f98088b96de8f0c6d4

3

https://hackage.haskell.org/package/mtl
https://felixspringer.xyz/homepage

This even allows us to use parts of the environment AppT, that were already set up beforehand. In
the following example we use the logger while reading in the configuration and connecting to the
database.

runApplication :: MonadIO m => AppT m a -> m a
runApplication app = do
 runStdOutLogging $ do -- run `LoggingT`
 config <- liftIO acquireConfiguration
 logInfoN $ "Acquired configuration: " <> T.pack (show config) -- we can log now
 (\ tma -> runReaderT tma config) $ do -- run `ReaderT Configuration`
 runDatabaseT config $ do -- run `DatabaseT`
 lift . lift $ logInfoN $ "Connected to database." -- we can also log here
 unAppT app

acquireConfiguration :: IO Configuration
acquireConfiguration = undefined -- TODO: Implementation.

If you just want something functional and are a proponent of simple Haskell you can stop here. This
is already looking pretty good, but we can do even better.

Let me show you, where this can be improved.

AppT’s instances

To use the environment you will have to provide a few instances.

instance (MonadIO m) => MonadLogger (AppT m) where
 monadLoggerLog loc src level msg = AppT . lift . lift $ monadLoggerLog loc src level
msg

instance (Monad m) => MonadReader Configuration (AppT m) where
 ask = AppT $ lift ask
 local f ma = AppT $ liftWith $ \ run -> local f $ run $ unAppT ma

instance (Monad m) => MonadDatabase (AppT m) where
 queryDatabase = AppT . queryDatabase

This is quite annoying. If you add another transformer to the stack, you will have to manually add
the lifting to each method. Only instances of the outer most transformer can be used for deriving
(DatabaseT in this case).

Using methods during initialization

We were able to use logInfoN during the initialization. Unfortunately we still have to remember to
lift the method call, unless each transformer in our stack provides a MonadLogger instance.

For a more complicated setup it might become hard to track all the lifts and sometimes we might
even need to use liftWith from MonadTransControl.

felixspringer.xyz 2022-02-05-f4716ae422f101a8d959c7f98088b96de8f0c6d4

4

https://felixspringer.xyz/homepage

It would be nice to also have a MonadLogger m constraint on runDatabaseT. So we basically want to be
able to use the full power of each transformer, right after we set it up.

Actually composing transformers
Until now, we have applied transformers on monads to generate a new monad from an existing
one. We can also compose two transformers and generate a new transformer with ComposeT.

newtype ComposeT
 (t1 :: (Type -> Type) -> Type -> Type)
 (t2 :: (Type -> Type) -> Type -> Type)
 (m :: Type -> Type)
 (a :: Type)
 = ComposeT { unComposeT :: t1 (t2 m) a }
 deriving newtype (Applicative, Functor, Monad)

Now we have to be clever about adding some instances to ComposeT.

Some canonical instances would include MonadTrans, MonadTransControl, MonadIO, MonadBase,
MonadBaseControl and maybe a few more like MonadThrow and MonadCatch. All of these canonical
instances can be implemented, as long as t1 and t2 implement MonadTransControl. These instances
just lift into the base monad m.

TIP You can find those canonical implementations here for example.

Then there are also our own semantically important instances, which we have to be especially
careful with. Let’s look at the example of MonadLogger:

-- | Default instance.
instance {-# OVERLAPPABLE #-} (Monad (t1 (t2 m)), MonadTrans t1, MonadLogger (t2 m))
=> MonadLogger (ComposeT t1 t2 m) where
 monadLoggerLog loc logSource logLevel = ComposeT . lift . monadLoggerLog loc
logSource logLevel

-- | Override the default instance, whenever `LoggingT` is used in a transformer
stack.
instance {-# OVERLAPPING #-} MonadIO (t2 m) => MonadLogger (ComposeT LoggingT t2 m)
where
 monadLoggerLog loc logSource logLevel = ComposeT . monadLoggerLog loc logSource
logLevel

With this setup we can lift instances through our entire transformer stack, from the point they are
initialized at.

The same overlapping style, using MonadTrans/MonadTransControl should be used for MonadReader
Configuration and MonadDatabase

felixspringer.xyz 2022-02-05-f4716ae422f101a8d959c7f98088b96de8f0c6d4

5

https://github.com/jumper149/homepage/blob/ce115f7aecb85830d9286ff7a6cba55fa9d39b0f/src/Control/Monad/Trans/Compose.hs
https://felixspringer.xyz/homepage

This recursive instance lookup will be useful to us, because now we don’t have to keep track of
lift/liftWith throughout our transformer stack anymore.

Deriving to the rescue
We did all of this with the premise, that deriving would improve. After we have set up our ComposeT,
we can derive everything we want for AppT. And now we can easily add another layer to our
transformer stack without changing any of the other instances.

We can also leave out some instances like MonadIO for example, that we needed during initialization,
but don’t want as part of our environment.

NOTE I am not a huge fan of MonadIO, because MonadBase IO does the job as well.

type (|.) = ComposeT

newtype AppT m a = AppT { unAppT :: (DatabaseT |. ReaderT Configuration |. LoggingT |.
IdentityT) m a }
 deriving newtype (Applicative, Functor, Monad)
 deriving newtype (MonadBase b, MonadBaseControl b)
 deriving newtype (MonadTrans, MonadTransControl)
 deriving newtype (MonadLogger)
 deriving newtype (MonadReader Configuration)
 deriving newtype (MonadDatabase)

We need IdentityT at the end of our transformer stack, so that our “non-default” instance of
LoggingT is inferred.

Initializing in style
Now we can finally use any class, as soon as we want. Let’s reimplement our initialization.

(|.) :: (t1 (t2 m) a -> t2 m a)
 -> (t2 m a -> m a)
 -> ((t1 |. t2) m a -> m a)
(|.) runT1 runT2 = runT2 . runT1 . unComposeT

runApplication :: (MonadIO m, MonadBaseControl IO m) => AppT m a -> m a
runApplication app = do

 let

 runConfigured tma = do
 logInfoN "Reading configuration."
 config <- liftIO acquireConfiguration
 logInfoN $ "Acquired configuration: " <> T.pack (show config)
 runReaderT tma config

felixspringer.xyz 2022-02-05-f4716ae422f101a8d959c7f98088b96de8f0c6d4

6

https://felixspringer.xyz/homepage

 runDatabaseT' tma = do
 config <- ask
 logInfoN "Connect to the database."
 -- Now we can even have a `MonadLogger m` constraint on `runDatabaseT`.
 runDatabaseT config tma

 runDatabaseT' |. runConfigured |. runStdOutLogging |. runIdentityT $ unAppT app

We finally arrived at a solution, that allows us to easily compose each step of initialization and also
comfortably derives our instances for us.

References
I personally use this kind of transformer stack for my homepage.

Since ComposeT has quite a few canonical instances, it would be sensible to add ComposeT to the
transformers library.

CAUTION mmorph also implements ComposeT, but the instances are a bit different!

I am also using a standalone module just for ComposeT. For the project specific instances I then use a
newtype (|.). I try to keep class definitions separated from the rest. And then finally I can spin up
my application.

felixspringer.xyz 2022-02-05-f4716ae422f101a8d959c7f98088b96de8f0c6d4

7

https://github.com/jumper149/homepage
https://hackage.haskell.org/package/mmorph
https://github.com/jumper149/homepage/blob/ce115f7aecb85830d9286ff7a6cba55fa9d39b0f/src/Control/Monad/Trans/Compose.hs
https://github.com/jumper149/homepage/blob/ce115f7aecb85830d9286ff7a6cba55fa9d39b0f/src/Homepage/Application/Compose.hs#L18
https://github.com/jumper149/homepage/blob/ce115f7aecb85830d9286ff7a6cba55fa9d39b0f/src/Homepage/Application/Compose.hs#L18
https://github.com/jumper149/homepage/blob/ce115f7aecb85830d9286ff7a6cba55fa9d39b0f/src/Homepage/Application/Configured.hs
https://github.com/jumper149/homepage/blob/ce115f7aecb85830d9286ff7a6cba55fa9d39b0f/src/Homepage/Application.hs
https://felixspringer.xyz/homepage

	composing Transformers
	Why is ReaderT of interest?
	Building an application
	Naive AppT implementation
	Improving initialization

	Actually composing transformers
	Deriving to the rescue
	Initializing in style

	References

