
beyond Typeclassopedia
There are quite a few type classes, that are completely fine the way they are
defined in the base library. These are mostly part of the famous
Typeclassopedia.

• Semigroup and Monoid

• Functor, Applicative and Monad

• Foldable and Traversable

This article is mainly an overview and doesn’t try to explain each type class. I also want to point out
some opinionated critique.

Typeclassopedia
The Typeclassopedia explains a few more type classes.

Pointed is a superclass of Applicative with just pure. I am not against this separation, but can’t think
of an example of Pointed, that isn’t also Applicative.

MonadFix is not as well known as some other type classes, but is actually quite useful. The
RecursiveDo extension adds some syntactic sugar to MonadFixes. This allows recursive bindings in do-
notation.

CAUTION
I am only covering the “left” side of the Typeclassopedia. The Category and Arrow
type classes are not discussed here. I am also ignoring Comonad for now.

To conclude the Typeclassopedia, let’s look at Alternative.

Alternative is a monoid

NOTE
MonadPlus m is equivalent to (Alternative m, Monad m). It’s an unnecessary alias, but
it doesn’t do any harm.

Alternative can actually be expressed with the other already introduced type classes.

CAUTION The QuantifiedConstraints language extension is required.

class (Applicative f, forall x. Monoid (f x)) => Alternative f where

  empty :: f a
  empty = mempty

  (<|>) :: f a -> f a -> f a

felixspringer.xyz 2022-01-17-f4716ae422f101a8d959c7f98088b96de8f0c6d4

1

https://hackage.haskell.org/package/base
https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/Typeclassopedia
https://felixspringer.xyz/homepage


  (<|>) = (<>)

NOTE
The Applicative f superclass is not necessary at all, but otherwise it would be an
alias for forall x. Monoid (f x).

The only problem is, that base introduces some Monoid instances, that don’t work with this
definition. Maybe for example uses a superclass constraint.

class Semigroup a => Monoid (Maybe a) where
  -- ...

The proposed Alternative doesn’t work, because forall a. Semigroup a (from Maybe) is a stronger
constraint than forall x. (from Alternative). I am not quite sure, whether this change can actually
break Alternatives laws. The Maybe example will be caught by the compiler at least.

TIP

The solution would be to use compatible instances. The currently used instances can
still be made available with newtypes.

The newtype Alt already exists for the other direction Alternative f ⇒ Monoid (f x).

The current situation isn’t bad though, considering that newtypes are annoying to use. Maybe idris
made the right choice with named implementations (multiple named instances in Haskell terms).

Another interesting change would be the separation of (<|>) and empty, similar to the separation of
Semigroup and Monoid (or Pointed and Applicative).

TIP

The structure of Applicative and Alternative is similar to a semiring.

Applicative /
Alternative

natural numbers boolean algebra algebra of types

empty 0 false Void

pure () 1 true ()

<|> + or Either

<*> × and (,)

The Typeclassopedia is actually quite old by now and there are more additions in base.

base library
Let’s start with MonadFail. This type class was a stupid idea to allow pattern matching in do-
notation. Whenever writing actual code you should use a case-block. Patterns that always match
are fine, but other patterns should just give a warning like “patterns are non-exhaustive”.

Bifunctor, Bifoldable and Bitraversable are nice to have. Generalizations for Trifunctor,
Quadrofunctor, etc. are missing though. I’m not sure how those type classes would be implemented

felixspringer.xyz 2022-01-17-f4716ae422f101a8d959c7f98088b96de8f0c6d4

2

https://hackage.haskell.org/package/base
https://www.idris-lang.org/
https://wiki.haskell.org/Typeclassopedia
https://hackage.haskell.org/package/base
https://felixspringer.xyz/homepage


without boilerplate.

MonadIO is a type class for all monads, that use IO as the base monad. This is a useful type class, but it
can be completely replaced with MonadBase from transformers-base. Additionaly MonadBaseControl
from monad-control could be added to base.

NOTE
I am in favor of completely removing MonadIO, which some people might find a bit
harsh.

MonadTrans from transformers and MonadTransControl from monad-control also fit into the same
category, but for monad transformers.

Base introduces Contravariant functors. Analogously to Applicative and Alternative, the
contravariant library defines Divisible and Decidable. These two type class can be quite useful, but
I haven’t explored this direction any further.

NOTE
This didn’t cover all type classes from base, but only the ones similar to the
Typeclassopedia.

Takeaways
• Classes like Monoid will often have multiple lawful instances, but Haskell requires us to use a
newtype for each implementation. Instances should be chosen wisely.

• Alternative and Applicative can be thought of as monoids.

• MonadFail is a fail.

• MonadBase makes MonadIO unnecessary.

• MonadBaseControl and MonadTransControl would be a nice addition to base, including MonadTrans
and MonadBase.

• Other type classes like Num, IsString, IsList or other stock classes deserve their own discussion.

felixspringer.xyz 2022-01-17-f4716ae422f101a8d959c7f98088b96de8f0c6d4

3

https://hackage.haskell.org/package/transformers-base
https://hackage.haskell.org/package/monad-control
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/transformers
https://hackage.haskell.org/package/monad-control
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/contravariant
https://hackage.haskell.org/package/base
https://wiki.haskell.org/Typeclassopedia
https://hackage.haskell.org/package/base
https://felixspringer.xyz/homepage

	beyond Typeclassopedia
	Typeclassopedia
	Alternative is a monoid

	base library
	Takeaways

