
an Interface for accessing
Environment Variables

The way, that programs usually interact with environment variables, can be
expressed beautifully in Haskell.

For me dependent types are the most natural way to semantically reason about programs.
Unfortunately dependently typed languages are not really production-ready yet. Haskell and GHC
often come close enough.

The source code of my homepage has become a playground for exploring new ideas in Haskell. And
that’s also where this idea originated from.

Example use case
Usually programs interact with a fixed set of environment variables. In this depiction environment
variables have a name, a content type and a default value.

An example of environment variables used by an HTTP server.

HOMEPAGE_CONFIG_FILE

A file path, where the configuration is read from. Defaults to "./homepage.json".

HOMEPAGE_LOG_FILE

A file path, where the log is appended. When unset the log is piped to StdOut.

HOMEPAGE_LOG_LEVEL

The minimum log level. Messages with an even lower log level will be discarded. Defaults to
"LevelDebug".

Furthermore we will need a parser for each environment variable.

Dependently typed approach
In a dependently typed language, like Idris, we can just use a simple data type and functions.

We use the sum-type EnvVarKind to identify each environment variable.

A data type representing an environment variable.

data EnvVarKind = EnvVarConfigFile
 | EnvVarLogFile
 | EnvVarLogLevel

Now we can pattern-match on any EnvVarKind. The exhaustiveness-checker of Idris would warn us

felixspringer.xyz 2022-04-11-f4716ae422f101a8d959c7f98088b96de8f0c6d4

1

https://github.com/jumper149/homepage
https://felixspringer.xyz/homepage

about missing cases.

The name of an environment variable is a simple function.

EnvVarName : EnvVarKind -> String
EnvVarName = \case
 EnvVarConfigFile => "HOMEPAGE_CONFIG_FILE"
 EnvVarLogFile => "HOMEPAGE_LOG_FILE"
 EnvVarLogLevel => "HOMEPAGE_LOG_LEVEL"

The type of an environment variable is already a bit special.

EnvVarType : EnvVarKind -> Type
EnvVarType = \case
 EnvVarConfigFile => FilePath
 EnvVarLogFile => Maybe FilePath
 EnvVarLogLevel => LogLevel

The function EnvVarType returns a value of type Type. We can now use this in defaultEnvVar and
parseEnvVar.

The default value of an environment variable is a dependently typed function.

defaultEnvVar : (x : EnvVarKind) -> EnvVarType x
defaultEnvVar = \case
 EnvVarConfigFile => "./homepage.json"
 EnvVarLogFile => Nothing
 EnvVarLogLevel => LevelDebug

The parser of an environment variable is also a dependently typed function.

parseEnvVar : (x : EnvVarKind) -> String -> Maybe (EnvVarType x)
parseEnvVar = \case
 EnvVarConfigFile => parseFilePath
 EnvVarLogFile => fmap Just . parseFilePath
 EnvVarLogLevel => readMaybe

With this setup we can access the final value through a function, which we initialize during startup
of our application.

acquireEnvironment : IO ((x : EnvVarKind) -> EnvVarType x)
acquireEnvironment = undefined -- TODO: Left out for brevity.

The actual implementation is left out here, but the idea goes as follows.

For each environment variable, lookup the EnvVarName. When there is a match, parse the content
using parseEnvVar. When parsing fails or when there is no match use defaultEnvVar. Add a case for

felixspringer.xyz 2022-04-11-f4716ae422f101a8d959c7f98088b96de8f0c6d4

2

https://felixspringer.xyz/homepage

each environment variable in the resulting function and return the value. The exhaustiveness-
checker will come in handy again.

Haskell approach
Unfortunately in Haskell we don’t have dependent types. We can still get very close with todays
language extensions (mainly DataKinds, GADTs and FunctionalDependencies).

KnownEnvVar uses functional dependencies and sets the same laws as the previous section.

class KnownSymbol name => KnownEnvVar (envVar :: EnvVarKind name value)
 | name -> envVar, envVar -> name, envVar -> value where
 parseEnvVar :: Proxy name -> String -> Maybe value
 defaultEnvVar :: Proxy name -> value
 caseEnvVar :: Proxy name -> EnvVarKind name value

In Haskell we can’t use simple functions like EnvVarName and EnvVarType. Instead we use functional
dependencies envVar → name and envVar → value.

NOTE
Additionaly we use name → envVar to ensure, that we have exactly one envVar for
each name. There are more details in the Appendix.

name and value are now required as type parameters to EnvVarKind to bring them into scope for the
methods. Aside from the additional type level information, EnvVarKind has exactly the same
constructors as before.

EnvVarKind is now a GADT.

data EnvVarKind :: Symbol -> Type -> Type where
 EnvVarConfigFile :: EnvVarKind "HOMEPAGE_CONFIG_FILE" FilePath
 EnvVarLogFile :: EnvVarKind "HOMEPAGE_LOG_FILE" (Maybe FilePath)
 EnvVarLogLevel :: EnvVarKind "HOMEPAGE_LOG_LEVEL" LogLevel

The information, that we previously encoded with simple functions, now becomes available on
type-level through instances of KnownEnvVar.

Instances for KnownEnvVar are required for each constructor of EnvVarKind.

instance KnownEnvVar 'EnvVarConfigFile where
 parseEnvVar _ = parseFilePath
 defaultEnvVar _ = "./homepage.json"
 caseEnvVar _ = EnvVarConfigFile

instance KnownEnvVar 'EnvVarLogFile where
 parseEnvVar _ = fmap Just . parseFilePath
 defaultEnvVar _ = Nothing
 caseEnvVar _ = EnvVarLogFile

felixspringer.xyz 2022-04-11-f4716ae422f101a8d959c7f98088b96de8f0c6d4

3

https://felixspringer.xyz/homepage

instance KnownEnvVar 'EnvVarLogLevel where
 parseEnvVar _ = readMaybe
 defaultEnvVar _ = LevelDebug
 caseEnvVar _ = EnvVarLogLevel

Finally the function we use to access an environment variable stays pretty much the same.

acquireEnvironment :: IO (forall name value. EnvVarKind name value -> value)
acquireEnvironment = undefined -- TODO: Left out for brevity.

TIP
It’s tempting to use TypeFamilies instead of FunctionalDependencies and remove the
type parameters from EnvVarKind. Unfortunately this makes it impossible to implement
the accessor function in acquireEnvironment.

To easily use this accessor function an mtl-style class can make sense. Here is an example of the
usage of such a class.

The Haskell snippets from this article are used here. acquireEnvironment is actually implemented
here.

Appendix A: Uniqueness of names
The functional dependency name → envVar, that we can use in Haskell, is very powerful and would
require a bit more effort with dependent types. Together with envVar → name it enforces that names
and environment variables are in a one-to-one relationship.

Without the name → envVar dependency there could be two references to the same environment
variable name.

In a dependently typed language we would have to use a proof to ensure this property actually
holds. We want EnvVarName to be injective.

Proving uniqueness of names in Idris.

ResolveEnvVarName : String -> Maybe EnvVarKind
ResolveEnvVarName = \case
 "CONFIG_FILE" => Just EnvVarConfigFile
 "LOG_FILE" => Just EnvVarLogFile
 "LOG_LEVEL" => Just EnvVarLogLevel
 _ -> Nothing

proofUniqueName : {x : EnvVarKind} -> Just x = ResolveEnvVarName (EnvVarName x)
proofUniqueName = case x of
 EnvVarConfigFile => Refl
 EnvVarLogFile => Refl
 EnvVarLogLevel => Refl

felixspringer.xyz 2022-04-11-f4716ae422f101a8d959c7f98088b96de8f0c6d4

4

https://github.com/jumper149/homepage/blob/a3479dd1e25d6ffe25a6f29d3d7888faed5bea2d/src/Homepage/Application/Logging.hs#L43
https://github.com/jumper149/homepage/blob/a3479dd1e25d6ffe25a6f29d3d7888faed5bea2d/src/Homepage/Application/Environment/Class.hs#L11
https://github.com/jumper149/homepage/blob/a3479dd1e25d6ffe25a6f29d3d7888faed5bea2d/src/Homepage/Environment.hs
https://github.com/jumper149/homepage/blob/a3479dd1e25d6ffe25a6f29d3d7888faed5bea2d/src/Homepage/Application/Environment/Acquisition.hs#L19
https://felixspringer.xyz/homepage

	an Interface for accessing Environment Variables
	Example use case
	Dependently typed approach
	Haskell approach
	Appendix A: Uniqueness of names

