felixspringer.xyz 2022-02-13-3f54fb81dc8a623e366c2479a7dbe706defeaa07

Showcase: deriving-trans

When creating monad transformer stacks, you usually have to implement some
instances manually. Here is a way how this can mostly be avoided. After writing
several blog articles on the topic I finally decided to create a library on Hackage.

The library consists of two concepts.

e Elevator

* ComposeT

Elevator

Elevator is a newtype wrapper for monad transformers. It can take three arguments.

1. monad transformer t :: (Type > Type) > Type > Type
2. monadm :: Type » Type

3. valuea :: Type

newtype Elevator t m a = Ascend { descend :: t ma }
deriving newtype (Functor, Applicative, Monad)
deriving newtype (MonadTrans, MonadTransControl)

We can use it to derive instances for monad transformers.

mtl adds an instance of each type class to each transformer. With n type classes and
n transformers this results in n’ instances.

NOTE
This is particularly annoying when you add your own transformers and type
classes.
Example

Let’s use mtl's Reader as an example.

Type class example “MonadReader”

You are probably familiar with the MonadReader class.

class Monad m => MonadReader r m | m -> r where
ask ::mr
local :: (r ->r) ->ma ->ma

Any transformer, that implements MonadTransControl from monad-control can be stacked on top of

https://hackage.haskell.org/package/deriving-trans
https://hackage.haskell.org/package/deriving-trans
https://hackage.haskell.org/package/mtl
https://hackage.haskell.org/package/mtl
https://hackage.haskell.org/package/monad-control
https://felixspringer.xyz/homepage

felixspringer.xyz 2022-02-13-3f54fb81dc8a623e366c2479a7dbe706defeaa07

a Reader and the MonadReader instance can be passed through. We can observe exactly this with the
Elevator instance below.

MonadReader instance for Elevator

instance (Monad (t m), MonadTransControl t, MonadReader r m) =>
MonadReader r (Elevator t m) where
ask = Tift ask
local f tma = (restoreT . pure =<<) § liftWith § \ runT ->
local f $ runT tma

Monad transformer example “ReaderT”
ReaderT is the canonical transformer, that implements a MonadReader instance.

newtype ReaderT r m a = ReaderT { runReaderT :: r ->ma }
-- manually implemented (Functor, Applicative, Monad)

Here we don’t have to do anything special aside from implementing the regular MonadReader
instance.

instance (Monad m) => MonadReader r (ReaderT r m) where
ask = ReaderT return
local f m = ReaderT $ runReaderT m . f

Usage
Now we can use Elevator to access a specific MonadReader instance in a transformer stack.
newtype CustomT m a = CustomT { unCustomT :: ReaderT Bool (ReaderT Char m) a }

deriving newtype (Functor, Applicative, Monad)
deriving (MonadReader Char) via Elevator (ReaderT Bool) (ReaderT Char m) a

Usually we would have to define this MonadReader Char instance manually, but now we can use
DerivingVia to generate it for us.

ComposeT

ComposeT is also a newtype wrapper, but it can take two monad transformers as arguments. This
allows us to actually compose two transformers (t1 and t2) into a new transformer (ComposeT t1
t2).

1. outer monad transformer t1 :: (Type » Type) > Type > Type

2. inner monad transformer t2 :: (Type > Type) » Type » Type

https://felixspringer.xyz/homepage

felixspringer.xyz 2022-02-13-3f54fb81dc8a623e366c2479a7dbe706defeaa07

3. monadm :: Type » Type

4, valuea :: Type

newtype ComposeT t1 t2 m a = ComposeT { deComposeT :: t1 (t2 m) a }
deriving newtype (Applicative, Functor, Monad)
-- manually implemented (MonadTrans, MonadTransControl)

We can use it to derive instances for monad transformer stacks. For each type class we will need
one recursive instance, that can be implemented with Elevator. Each transformer, that is supposed
to provide an instance for a transformer stack, will require an additional instance.

Example

We are sticking to our Reader example.
TIP The recursive instance can always be derived using Elevator.

recursive MonadReader instance for ComposeT

deriving via Elevator t1 (t2 (m :: * -> *))
instance {-# OVERLAPPABLE #-}
(Monad (t1 (t2 m))
, MonadTransControl t1
, MonadReader r (t2 m)
) => MonadReader r (ComposeT t1 t2 m)

Additionaly we need the base case for our recursion, which is ReaderT in this case.

The recursive instance is using the OVERLAPPABLE pragma, because whenever a
WARNING ReaderT is encountered in a transformer stack, we want to use the following
instance.

ReaderT's MonadReader instance for ComposeT

deriving via ReaderT r (t2 (m :: * -> *))
instance Monad (t2 m) => MonadReader r (ComposeT (ReaderT r) t2 m)

Usage

Monad transformer stacks can be useful if you want to combine multiple transformers. The
instances I just introduced will look very similar for any type class and transformer.

Now let’s get to a use case.

NOTE We will be using a handy infix type operator.

https://felixspringer.xyz/homepage

felixspringer.xyz 2022-02-13-3f54fb81dc8a623e366c2479a7dbe706defeaa07

type (|.) = ComposeT

type StackT = StateT Int |. CustomT |. ReaderT Char |. IdentityT
newtype FinalT m a = FinalT { unFinalT :: StackT m a }

deriving newtype (Functor, Applicative, Monad)

deriving newtype (MonadTrans, MonadTransControl)

deriving newtype (MonadBase b, MonadBaseControl b)

deriving newtype (MonadReader Char)

deriving newtype (MonadCustom)

deriving newtype (MonadState Int)

deriving (MonadError e) via Elevator StackT m

We add IdentityT at the end, because the “base-case” instances only cover t1
CAUTION)
(ComposeT's first argument).

Now we are able to derive a whole lot of instances.

One big advantage of this method is, that when you change the transformer stack,
NOTE the instances will still keep working. Especially manually using lift/liftWith would
be cumbersome and even error prone.

We also need a runner function for FinalT. We can now implement this incrementally, which is
very clean and might be a good way to refactor your huge initialization function, that lived in I0
until now.

runFinalT :: MonadBaseControl IO m => FinalT m a -> m (StT FinalT a)
runFinalT final =
runStateTFinal |.
runCustomT |.
runReaderTFinal |.
runIdentityT § unFinalT final
where
runReaderTFinal :: MonadBase I0 n => ReaderT Char n b ->n b
runReaderTFinal tma = do
content <- 1liftBase $ readFile "config.json"
case content of
[1 -> error "empty file"
char : _ -> runReaderT tma char

runStateTFinal :: MonadReader Char n => StateT Int n b -> n (b, Int)
runStateTFinal tma = do

number <- fromEnum <$> ask

runStateT tma number

Now every transformer represents an initialization step.

https://felixspringer.xyz/homepage

felixspringer.xyz 2022-02-13-3f54fb81dc8a623e366c2479a7dbe706defeaa07

We are using another infix operator here, that allows us to combine transformer
runners.

(].) :: (forall a. t1 (t2 m) a -> t2 m (StT t1 a))

NOTE -> (forall a. t2 ma ->m (StT t2 a))
-> (forall a. (t1 |. t2) ma ->m (StT t2 (StT t1 a)))
(].) = runComposeT
infixr 1 |.
Summary

1. Use Elevator to access instances, that are shadowed by transformers stacked on top.

2. Use ComposeT to implement large monad transformer stacks.

There are some caveats

* You will need quite a few language extensions (and I’'m too lazy to look them all up).
* Be careful with MonadTransControl, when implementing Elevator instances.

* DerivingVia sometimes needs a little help with kind inference.

* Watch out for mistakes with overlapping instances.

* Append IdentityT to your ComposeT transformer stack, to keep all instances.

I am using this library myself for my homepage. If you notice any problem, I will be happy to hear
from you!

https://github.com/jumper149/homepage/blob/a612bdca6ac8dfa0fb9ce103707b0921dfd8f90a/src/Homepage/Application.hs
https://felixspringer.xyz/homepage

	Showcase: deriving-trans
	Elevator
	Example
	Usage

	ComposeT
	Example
	Usage

	Summary

